Stochastic models of recurrent neural networks
نویسندگان
چکیده
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملrobust stability of stochastic fuzzy impulsive recurrent neural networks with time-varying delays
in this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the takagi-sugeno (t-s) fuzzy models is considered. a novel linear matrix inequality (lmi)-based stability criterion is obtained by using lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملBidirectional Recurrent Neural Networks as Generative Models
Bidirectional recurrent neural networks (RNN) are trained to predict both in the positive and negative time directions simultaneously. They have not been used commonly in unsupervised tasks, because a probabilistic interpretation of the model has been difficult. Recently, two different frameworks, GSN and NADE, provide a connection between reconstruction and probabilistic modeling, which makes ...
متن کاملA Markovian Study of Recurrent Neural Networks with Stochastic Dynamics
Recurrent neural networks of binary stochastic units with a general distribution function are studied using Markov chains theory. Sufficient conditions for ergodicity are established and under some assumptions, the stationary distribution is determined. The relation between fixed points and absorbing states is studied both theoretically and through simulations. For numerical studies the notion ...
متن کاملSupervised Models C1.4 Stochastic neural networks
Deterministic neural networks such as backpropagation of error, multilayer perceptrons, and locally based radial basis methods have been a major focus of the neural network community in recent years. However, there has been a distinct, albeit less pronounced, interest in stochastic neural networks. In this review we provide the reader with a sense of the defining components of a stochastic neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2011
ISSN: 1662-5188
DOI: 10.3389/conf.fncom.2011.53.00017